Materials for hot carrier plasmonics [Invited]

نویسندگان

  • Tao Gong
  • Jeremy N. Munday
چکیده

While the field of plasmonics has grown significantly in recent years, the relatively high losses and limited material choices have remained a challenge for the development of many device concepts. The decay of plasmons into hot carrier excitations is one of the main loss mechanisms; however, this process offers an opportunity for the direct utilization of loss if excited carriers can be collected prior to thermalization. From a materials point-of-view, noble metals (especially gold and silver) are almost exclusively employed in these hot carrier plasmonic devices; nevertheless, many other materials may offer advantages for collecting these hot carriers. In this manuscript, we present results for 16 materials ranging from pure metals and alloys to nanowires and graphene and show their potential applicability for hot carrier excitation and extraction. By considering the expected hot carrier distributions based on the electron density of states for the materials, we predict the preferred hot carrier type for collection and their expected performance under different illumination conditions. By considering materials not traditionally used in plasmonics, we find many promising alternative materials for the emerging field of hot carrier plasmonics. ©2015 Optical Society of America OCIS codes: (250.5403) Plasmonics; (160.0160) Materials; (040.5160) Photodetectors. References and links 1. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014). 2. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015). 3. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011). 4. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013). 5. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013). 6. F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015). 7. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012). 8. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014). 9. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011). 10. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014). 11. T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015). 12. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). 13. M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009). #249149 Received 31 Aug 2015; revised 4 Oct 2015; accepted 4 Oct 2015; published 12 Oct 2015 © 2015 OSA 1 Nov 2015 | Vol. 5, No. 11 | DOI:10.1364/OME.5.002501 | OPTICAL MATERIALS EXPRESS 2501 Corrected: 24 November 2015 14. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012). 15. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard 3rd, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014). 16. M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014). 17. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014). 18. J. Spitaler and L. Pardini, “Electronic-Structure Calculations,” http://exciting-code.org/beryllium-electronicstructure-calculations. 19. L. H. Bennett, Electronic Density of States: Based on Invited and Contributed Papers and Discussion (U.S. National Bureau of Standards, 1971). 20. F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008). 21. D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012). 22. K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015). 23. M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012). 24. S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013). 25. M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008). 26. A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011). 27. V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999). 28. A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014). 29. E. Faizabadi, “Single wall carbon nanotubes in the presence of vacancies and related energy gaps,” in Electronic Properties of Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2011). 30. K. Nakada and A. Ishii, “DFT Calculation for Adatom Adsorption on Graphene,” in Graphene Simulation, J. R. Gong, ed. (Intech, 2011). 31. E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980). 32. A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014). 33. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014). 34. A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015). 35. K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.Condensed Mat. 27, 16 (2015). 36. K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013). 37. D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Materials for hot carrier plasmonics

While the field of plasmonics has grown significantly in recent years, the relatively high losses and limited material choices have remained a challenge for the development of many device concepts. The decay of plasmons into hot carrier excitations is one of the main loss mechanisms; however, this process offers an opportunity for the direct utilization of loss if excited carriers can be collec...

متن کامل

Plasmonic materials for energy: From physics to applications

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging application...

متن کامل

Plasmonic hot electron transport drives nano-localized chemistry

Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, ak...

متن کامل

T Arc Photovoltaics Centre of Excellence 2010 / 11 Annual Report

There has been approximately equal work on the two major projects in Third Generation in 2010. These are the Group IV nanostructure tandem cells project the “all-Si” tandem cell and the Hot Carrier solar cell project, with its continuing funding from GCEP (Global Climate and Energy Project). There has also been further work on Up-conversion and on Plasmonics. The Si nanostructure work has seen ...

متن کامل

Roadmap on optical energy conversion

For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energyconversion processes reshaped th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015